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Thermodynamic properties of a liquid at a high pressure are calculated on the bas& of the empirical Tare 
equation. Numerical studies, using the conjugate mathematical model of heat and mass transfer involving 
solidification-crystallization of a substance, have revealed the specific features of ice melting at a high 
pressure. 

A design of new technologies of pressure casting and crystallization has necessitated the study of heat and mass transfer 
processes at the "melting-solidification" phase transition. A casting pressure can increase to 20 MPa and up [1-3], the 
properties of metals and alloys in this case become dependent not only on temperature but on pressure as well. The pressure 

effect on substance properties in a solid-state phase has been investigated [4] but thermophysical properties of melts in a wide 

pressure range are insufficiently studied and classified. 
Mathematical modeling of the process is a matter of concern in [5, 6]. In [5], the heat conduction equation is used to 

treat solidification of a cylindrical casting without considering melt hydrodynamics. The high-pressure effect is taken into 

consideration by increasing the heat transfer coefficient of the casting surface. Liquid crystallization in a closed vessel [6] 
entails an increase of pressure across the liquid phase at the expense of increasing a specific volume of the solid-state phase. 

In the present work, using the example of water solidification, a comparative analysis is made of the processes at 
atmospheric and higher external pressures with the aid of the conjugate mathematical model of heat and mass transfer in 

solid-state and liquid phases. Thermophysical properties of a liquid at a high pressure are calculated based on the empirical 

equation of state and approximation of data listed in handbooks. 
Thermodynamic and thermophysieal liquid properties at high pressure. A liquid is intermediate in physical 

properties between a solid and a gas. A physical pattern of a liquid is complicated, for this reason there is no theoretical 

justified equation of state for a liquid phase. Liquid properties in a wide range of pressures and temperatures are described by 
the empirical Tate equation [7] 

/ (?v i = K (1) 
!, Op .~ C (7') + ,  ' 

where L(T) is some empirical temperature function determined from experimental data. Integrating this equation along an 
isotherm going from some fixed pressure Po (e.g., atmospheric) to current p, we obtain 

v 1 = - ! - I n  Poq-L(T) 
Vo n p q- L (T) 

where the new constant l/n -= K/v o is introduced. Represent the latter equation in the exponential form. Expanding the 
exponent into a series and leaving the two first terms of expansion, we finally arrive at 

po + L + L (T) -- ( ~o )" (2) 
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TABLE 1. Specific Volume of Water as a Function of Pressure at Some 

Fixed Temperature 

i v. 10~, m3/kgl g'lp3 m S/kg; '  
p, MPa [10] ca icula~xon 

I by,_(.2), 

I 1,0117 1,0116 
5 1.,0099 t,0098 

10 1,0077 1,0076 
20 1,0034 1,0034 
30 0,9993 0,9992 

I 10s'm3/kg; 
P, MPa! v. [ 1 o ]  

g I 099 3 
0,9914 

75 0,9820 
100 0,9733 

v.lO3, ma /kg ;  
calculation 
bv (2) 

0,9952 
0,9913 
0,9820 
0,9733 

Note: t = 50~ In calculations by formula (2), Po = 1 atm = 0.101325 

MPa, v o = 1.0120 • 10-3m3/kg. 

Calculate thermal (more exactly thermodynamic) coefficients [8]. They are as follows: the isothermal coefficient of 

compressibility 

[ ~ - -  - -  �9 

v , r n ( p + L ) '  (3) 

the coefficient of volumetric expansion 

[3= t [ Ov'~ = P - - P o  d L .  (4) 
v ~ p n (Po + L)(p @ L) dT ' 

the thermal coefficient of pressure 

1 ( O p )  P--Po dL 
. . . . .  . ( 5 )  

p ~ o P(po+L) dr 

Unlike the equation of state for the Mendeleev-Clayperon ideal gas, which is derived strictly in the molecular-kinetic 

theory of a gas, the Tate equation is empirical and valid only at p > Po. In connection with this, the limiting transition p --, 

Po has no sense in (4)-(5). 

Differential equations of thermodynamics allow determination of calorific properties as a function of pressure, provided 

the thermal equation of state is known [8]. Using (2), calculate the change in calorific properties by increasing the pressure 

from Po to p. 
A change in entropy is 

As = s (p, T) - -  S (po, T) = :-- i ( Ov ) .-ff-dp-. 
Po P 

d---T- n - -  1 (n - -  1)(Po + L) ; 

a change in enthalpy: 

1 [ ,  ]I 
�9 P o + C  V- -Vo  n ( p o + L ) - -  dT J + T - - ~ ( % - v ) ;  

and a change in specific heat at constant pressure: 

== T I 

Acp ---- cp (p, 

d2L f n 
t (Vo v) 

dT" [ n - - 1  

{ O~v \ , 
T)- -cp(po ,  T) = - -  T fo l ~ ) ap = 

v (p - -  po) -1! + T ( dL 12 v (p - -  po) 2 
(n 1) (Po -+- L) j - -  ~ dT / n (po + L) 2 (p q- L) 

(6) 
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Fig. 1 Fig. 2 

Fig. 1. Water density p, kg/m 3, as a function of pressure p, MPa, at different 
temperatures, ~ 1) 0; 2) 10; 3) 20; 4) 80. 

Fig. 2. Influence of external pressure and temperature [1) 0; 2) 10; 3) 20; 4) 40; 5) 
60; 6) 80~ on the volumetric expansion coefficient of water, 10-4 K -  1. 

The differential equations of thermodynamics permit calculation of calorific characteristics as a function of a specific 
volume by the known equation of state [8] and as a function of pressure in terms of the equation of state. 

A change of internal energy is 

A t t ~ u ( v ,  T ) - - -u (vo ,  T ) =  s  T{" !. aTOP ']}~, __pidv:=j 

__ 1 T - - - - dL  q_ t' Vo ~ v d L  
1 - - 1 ~  d T  (Po L )  ) - -  vo ~-  (vo - -  v )  T - - - -  L - 

_ , j d T  ' 

a change of specific heat at a constant volume is 

V 

Ac~ ~ G (v, T) - -  c~ (Vo, T) = T t (" ~2p ,) dv = 
~o !, OT "a }~ 

dT" , 1 - -  n \ v n - -  1 , 

The remaining calorific properties of a liquid at a high pressure are evaluated in terms of the determined quantities. 

As an example, determine the constant n and the form of the function L(T) in the Tate equation of state (2) for the most 

extensively studied matter, i.e., water. In [9], the table of mean coefficient values of water compressibility a(p, t) is given. 
As far as the pressure increases, a decreases (this is confirmed by the obtained expression (3)). With increasing temperature, 
the compressibility of liquids increases in the general case, with the exception of water -- its compressibility c~ is at minimum 

approximately at 50~ Processing these data with the help of (3) by the method of least squares and performing temperature 
averaging, we obtain n = 6.4. The pressure-averaged L(t) values have been approximated by the method of least squares as 
a polynomial in the third power 

L (t) = a o q- alt @ a.,t" + aat a, 0 ~ t ~ 80 ~ (7) 
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Fig. 3 Fig. 4 

Fig. 3. Isolines of the stream function of water circulation at atmospheric pressure. 
The hatched region is ice. Maximum values (with respect to an absolute value) of the 
stream function: (+)  6.7; (~<) - 2 .  

Fig. 4. Isolines of the stream function of water circulation at the increased pressure 
50 MPa. Maximum stream function is (+)  9.8. 

where a 0 = 3.0504.108; a 1 = 2.1140.106; a 2 = -2.770-10-4; a 3 = 87.166; t, ~ L, Pa. 
To verify the obtained results, compare the data on v = v(p) given in [10] and calculated by the Tate formula (2) for 

water. All the results are listed in Table 1 and illustrate good agreement. 

We have employed the tabular data to verify the validity of the approximation exp{v/v o - 1} = v/v o used to derive 
(2). Estimates show that with an increase of pressure from atmospheric to 100 MPa, the error of the approximation does not 
exceed 0.075%. 

Having determined n and L(t) for water, we may calculate the density p(p, t) = I/v(p, t) from Eq. (2). Figure 1 

represents p = p(p) at different temperatures with an increase of the pressure, the density is seen to vary insignificantly with 

temperature. The estimate at t = 20~ shows that as far as the pressure increases from 1 to 100 MPa, i.e., by 99 MPa, the 
density increases by 40.4 kg/m 3 or by 4% of its initial value. 

From the approximation (7) it follows that water has some critical temperature t* = t = 50~ at which L(t) attains 

its maximal value Lma x = 353 MPa, while dL/dt = 0. Consequently, the thermal coefficients/3 (4) and 3, (5) reverse sign when 
going through t*. At t < t=,/~ > 0 and 3, > 0; at t > t*/3 < 0 and 3' < 0. Figure 2 displays/3 =/~(p) calculated by Eq. 
(4) at different temperatures. Here an appreciable pressure effect on/~ is observed, especially at low temperatures and, vice 
versa, after inversion at t > t* I /~ (t = 80~ > I # (t = 60~ I. 

Calculations of specific heat variation at constant pressure Acp by formula (6), with the pressure increasing from Po 

to p, have shown that ACp ,~ Cp(.Po, t). 
Melting temperature variation causedby an increase in pressure may be evaluated by the known Clayperon-Clausius 

equation [8]. Thus water at 50 MPa is transformed into ice at tph ----- - 4~  in this case the heat of melting-solidification, 

corresponding to the phase transition temperature tph , decreases by 21 kJ/kg and becomes equal to Qph = 313 kJ/kg. 
In [11], the table of water thermal conductivities X(p, 0 and in [12] the values of dynamic viscosity coefficient ~7 (P, 

t) at different pressures and temperatures are presented. The dependence X(p, 0 with a relative error not exceeding 0.6% is 
approximated by the expression 
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?~/Zo :- [1 -[- (21 ,865-  0,42745t -7 7 ,4163.10-at  2 --- 

--- 3,5804-10-5t3) - 10-~p] 1/2; 

O ~ 1 7 6  O , l ~ p ~ 5 0 ~ a .  
(8) 

The dependence ~ (p, 0 is approximated with a relative error o f  no more than 0.1% by the expression 

~1/% - 1 -7 (0,I0257t - -  3,2653). 10-~p; (9) 

O ~ 1 7 6  0,1 ~ p ~ . ~ 8 0  MPa. 

In (8) and (9) X o and % are the values of  Coefficients at p = 0.1 MPa. 

T h e  conjugate  mathemat ica l  heat and mass  transfer mode l  at liquid solidification. The process of  water freezing 

in a rectangular cavity is used to investigate a high pressure effect on the process. 

Consider a two-dimensional viscous fluid flow initiated by thermal convection in a rectangular region with dimensions 

a x b (horizontal x and vertical y coordinates, respectively). The region bomadaries are impermeable,  the origin of  coordinates 

is at the left-hand bottom corner. The vertical surfaces are at x = 0; at x = a they are isothermal with temperatures T l, T 2 

(T 1 < T2), the horizontal surfaces are at y = 0; at y = b they are adiabatic. 

At T 1 < Tph (Tph is independent of  pressure), a solid-state phase (ice), with constant thickness e in the no-convection 

approximation, is formed at the left vertical boundary of the region, while a solidification boundary represents a vertical line. 

Free convection causes energy redistribution in the liquid phase and distortion of  the solidification boundary. Here  the thickness 

of  the solid phase t becomes a variable quantity. 

In order to write the heat and mass transfer equations in a dimensionless form, we have chosen the characteristic linear 

dimension l = b, temperature difference 6T = T 2 - -  Tph , velocity u 0 = (g/33T/) 1/2, and time ~-0 = llu0 as Scales. These 

parameters form the dimensionless Grashof Gr = gt33Tlh, o 2, Reynolds Re = uol/vo, and Peclet Pe = uol/a 3 numbers. The 

specific heat of  a phase transition Qph is taken into account in the effective thermal diffusivity aef f abruptly changing at the 

solidification boundary. In the Boussinesq approximation, the solidification accompanied by liquid phase circulation, is 

described in terms of  the variables "vor t ic i ty-current  function (r by the conjugate system of equations [13] for energy 

transfer, vorticity, and the Poisson equation: 

dT ~ 0 (uT) ~ - - -  V T (10) 
O~ Ox Pe V ; 

0 
- - -  ( v T )  -- 

Og 

do~ 3 3 

Ov 3X ?;U 

_ _  ~, v Gr 
Re V~, v ~ - V  c~ -7 Re 2 

- -  co = 7'-'% 

U(O) = 

OT 

Ox 

(11) 

(12) 

where u = O~blOy, v = 

At the initial moment  of  time 

T(0,  x, g)= T~; to(0, x, g ) = - 4 ( 0 ,  x, u ) = 0 .  

The set of  equations (10)-(12) is closed by the boundary conditions for a temperature 

OL' v=0 3T T('v, 0, y) T1; T('~, a, g ) =  To_; - -  Og 

and the stream function 

-3~b/0x are the velocity components; V 2 = 02[OX 2 + O2[Oy 2 is the Laplacian. 

(13) 

- -  y=b 0 (14) 

, (*, O, y ) - - *  (*, a - - - e ,  y)--:  a~(T, x, O ) =  q (~, x, b ) - - O .  (15) 
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The boundary values of vorticity on solid surfaces, confining a liquid phase, and on the movable solidification boundary, are 

determined from the Poisson equation (12). 

The formulated problem has been solved by the time-dependent technique. For quantization of the equations, we used 

the implicit scheme of alternating directions. The two-dimensional equations were reduced by the separation method to a 
convergent sequence of  one-dimensional equations which were then solved by the longitudinal-transverse elimination technique 

using the straight-through counting scheme without evident separation of a phase boundary. A movable solidification boundary 

was determined by the position of the isotherm T = Tph. We used a regular network; when the curvilinear solidification 

boundary did not coincide with the network points, use was made of differences with variable steps along the stream function 

and vorticity coordinates. The vorticity of a liquid phase at solid boundaries was calculated with the aid of a two-contour 

scheme [14] allowing the boundary conditions of "adhesion" to be satisfied with the required accuracy. 

Convection terms in transfer equations (10)-(11) were approximated with the help of a conservative scheme with donor 

cells [15]. This scheme is distinguished with the transport property, and velocity averaging preserves a partial second order 

of accuracy in it, which is typical for the schemes with central differences. In [16] it is shown that this scheme of quantization 

of convective terms requires less computation time compared to other schemes. 

To solve the difference analog of the Poisson equation (12), we have applied the method of successive linear upper 

relaxation with optimization of the relaxation parameter. A solution algorithm of the problem is discussed in detail in [17]. 

Computation results. A process of water freezing in a rectangular cell was computated: a) for solidification at an 

atmospheric pressure; b) at a high external pressure p = 50 MPa. The computation network consisted of 40 x 60 nodes. 

Thermophysical characteristics of water at 50 MPa were calculated in accordance with the above information. Ice 
density was calculated by the formula I18] 

p = 916,8 [1 n}- 0,94:i0 -G (p - 1)1 (I --- 1,53. lO-'~t), kg/ra a 

where t, ~  p ,  MPa. 

Thermophysical characteristics of water at an atmospheric pressure are given in [13]. Heat capacity and thermal 

conductivity depend on temperature and change in a stepwise manner with a transition through a solidification boundary: 

C (kJ/kg)~=: I 2,090 + 0,0052t, t <~t+; 
[ 4,212 - -  0,001 it, t ;~. t,~. 

/. (W/(m.~:))', .... [ 2 ,210--  0,011St, t ~ t,~; 

10,569+ 0 O016t. t).~t~,. 

A specific feature in water behavior at atmospheric pressure near a solidification temperature is the density inversion. To 

describe this phenomenon, a temperature-dependent coefficient of volumetric expansion was introduced: 

fl (T) = a + 2bT -}- 3cT" + 4 d T  3 

1 ~ a T + b T  ~ + c T  3 + d T ~  

where a = -6.789645 • 10-5; b = 9.072943 x 10-6; c = --9.645681 • 10-S; d = 8.737030 • 10-1~ T, K. 

Density was assumed to be constant both for water and ice, with the exception of the phase boundary where it becomes 
discontinuous: 

999,841, t ~ t~,; 
(kg/ma)~= P 

/ 917,345, t < t,~. 

Kinematic viscosity of water was assumed to be equal to 

v := 1 , 4 2 9 . 1 0  -# In2tsec. 

In both calculation variants (p = 0.1 and 50 MPa), the temperature of the left-hand boundary was taken as t 1 = 

-6 .7~  of the right boundary t 2 = 14.5~ the height of the working cavity was a = 0.073 m, and the width was b = 0.045 
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m. Such parameters were not chosen arbitrarily. In [13], quantitative comparison of calculations according to the given 
procedure with a physical experiment at atmospheric pressure showed satisfactory agreement of results. 

Figure 3 exhibits an ice crust profile and water circulation lines at an atmospheric pressure. A convection effect 
manifests itself in thinning of the ice crust in the upper section of the region. A liquid phase circulates to form two stable 
stratified vortices. Here in the upper section of the region near a solidification boundary, water flows downward, while in the 
upper part --  upward. The maximum flow velocity is 2.27 • 10 -3 m/see. 

The ice crust profile and the stream function isolines essentially differ in the case of increased pressure (Fig. 4). A 
liquid circulates in one stratified vortex and rotates counterclockwise. A maximum flow velocity is 5.29 • 10 -3 m/see. 

Conclusions. A conjugate mathematical model of heat and mass transfer at the melting-solidification transition is 
developed with inhomogeneous substance properties taken into consideration. 

Expre~ions are obtained for thermodynamic properties of the liquid phase at an increased pressure based on the 
empirical Tate equation of state. As an example, water properties are calculated at 50 MPa. 

The conducted numerical investigations have shown that water crystallization at atmospheric and increased (50 MPa) 
pressures qualitatively differ. 

The mathematical model developed here may be useful for predicting technological regimes of casting and 
crystallization under pressure. 

NOTATION 

v, specific volume of the liquid; p, pressure; T, temperature, K; K, coefficient; L(T), temperature function in the Tare 
equation; Po, initial pressure at integration of the Tate equation; Vo, corresponding specific volume; n, constant; or, isothermal 
coefficient of compressibility;/3, coefficient of volumetric expansion; % thermal coefficient of pressure; s, specific entropy; 
i, specific enthalpy; Cp, cv, specific heat capacities; u, specific internal energy; t, temperature, ~ a o, aj, a 2, a 3, coefficients 
of the polynomial; t*, critical temperature; tph, temperature of melting-crystallization; Qph, heat of the phase transition; k, 
thermal conductivity; r/, coefficient of dynamic viscosity; a, b, dimensions of the rectangular cavity; T1, T2, temperature of 
vertical surfaces of the cavity; e, thickness of ice crust; l, characteristic linear dimension; 6T, temperature difference; uo, 
characteristic velocity; to, characteristic time; g, free fall acceleration; criteria: Gr, Re, Pe, Grashof, Reynolds, Peclet numbers; 
a, effective thermal diffusivity; oJ, vorticity; ~, stream function; u, v, velocity components of convective liquid flow; r, time; 
~, kinematic viscosity of a liquid. 
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